Substituted Derivatives of 10-Phenyl-9-Acetoxyanthracene

Janina Heldt, Józef Heldt * and Janina Gronowska **
Institute of Physics, University of Gdańsk, Gdańsk, Poland

(Z.Naturforsch. 30 a, 612-618 [1975]; received March 3, 1975)

Absorption and Emission Spectra, Quantum Yield and Lifetime of Fluorescence

The absorption and fluorescence spectra of five substituted derivatives of 10-phenyl-9-acetoxy-anthracene were measured and the oscillator strengths of the ${}^1A \rightarrow {}^1L_a$, ${}^1A \rightarrow {}^1B_b$ and ${}^1A \rightarrow {}^1C_b$ electronic vibration bands were determined. Comparison of the absorption spectra of these compounds to the unsubstituted molecule (anthracene) indicate the presence of bathochromic and steric effects. The fluorescence quantum yield and the mean lifetime of the fluorescence were also measured.

1. Introduction

The replacement of one or more hydrogen atoms by some functional groups in a polynuclear aromatic compound modifies the electronic absorption spectrum in a complex manner. In the literature ¹⁻³ four types of these substitution effects are recognized. Usually they are designated as: a. the bathochromic effect (B-effect), b. the fine structure effect (Fs-effect), c. the conjugation effect (C-effect) and d. the steric effect (S-effect). The substitution effects have been investigated for many derivatives of conjugated molecules ¹⁻⁶. The theory of these effects has been described in quantum chemistry books, e. g. ^{7,8}.

In this paper we present the results of studies of the substitution effects on five derivatives of 10phenyl-9-acetoxyanthracene (I) namely:

10-(4-acetoxyphenyl)-9-acetoxyanthracene (II),

10-(4-methylphenyl)-9-acetoxyanthracene (III),

10-(4-acetoxyphenyl)-2,9-diacetoxyanthracene (IV),

10-phenyl-2-methyl-9-acetoxyanhtracene (V) and

10-(2-acetoxyphenyl)-3-metoxy-2,9-diacetoxy-anthracene (VI).

In order to illustrate the influence of the substituents $-\text{OCOCH}_3(-\text{OAc})$, $-\text{OCH}_3$ and $-\text{CH}_3$ at different positions on the anthracene or phenyl ring on the absorption and emission transition probabilities the oscillator strength, f, has been computed for the ${}^1A \rightarrow {}^1L_a$, ${}^1A \rightarrow {}^1B_b$ and ${}^1A \rightarrow {}^1C_b$ bands. Also the mean lifetime τ and the quantum yield O of the fluorescence have been measured.

* Now on leave from the University of Gdańsk (Poland) at I. Physikalisches Institut der Universität zu Köln, *D-5000 Köln 41*, Fed. Rep. of Germany.

** Institute of Chemistry, N. Copernicus University, 87-100 Toruń, Poland.

2. Experimental

The synthesis of the investigated compounds is given in 9 . The compounds were recrystallized from ethanol and their purity was checked chromatographically before use. The solvent n-heptane was spectrally pure. The concentration of the compounds in the solution was $2 \times 10^{-5} \, \mathrm{g \cdot cm^{-3}}$.

The absorption spectra were measured on the Perkin-Elmer Type 402 and the Zeiss-Jena type VSU-2 spectraphotometers. The emission pectra were obtained by means of photoelectric recording as shown in Figure 1. The fluorescence was excited by irradiation with light emitted by a 100 W bulb filtered by means of a Hg-monochromatfilter with maximum transmission at 365 nm.

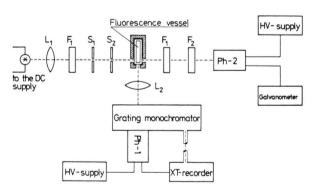


Fig. 1. Schematic diagram of the experimental set-up. L_1 , L_2 — lenses, S_1 , S_2 — slits, $F_1 \dots F_3$ — filters, Ph-1, Ph-2 — photomultipliers.

Reprint requests to Doc. Dr. hab. J. Heldt, Institut Fizyki, Uniwesytet Gdański, Gdańsk, Poland.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

The quantum yield of the solutions under investigation was measured by means of two photomultipliers (see Fig. 1), one monitoring the intensity of the transmitted beam and the other (set perpendicularly to the former) the intensity of the fluorescence light. The solutions were excited in the long-wave absorption band as in the case of emission spectra measurements. The photocurrents from photomultipliers Ph-1 and Ph-2 were measured by means of an XT recorder and a mirror galvanometer, respectively. The apparatus for measuring the fluorescence quantum yield was calibrated by means of a solution of anthracene in n-hexane for which the quantum yield is well known 10.

The fluorescence lifetime measurements for the n-heptane solutions of these compounds were performed by means of a phase shift fluorometer constructed by Bauer and Kowalczyk $^{11}.$ In the apparatus, solutions are excited with a HBO-200 mercury lamp through a monochromator transmitting the 365 nm Hg line. The emission was observed through a second monochromator at 405 nm, i.e., at the first vibration peak of the emission spectrum. The quantum yield and decay time of the solutions were measured several times. The figures given in Table 1 are mean values of five measurements performed at intervals of several days. The instrumental errors of the mean lifetime and the quantum yield are $\pm\,0.1$ ns and $\pm\,0.05$, respectively.

The results of spectral investigations are shown in Figures 2, 3 and 5. The positions of the vibrational sublevel maxima of the absorption and emission spectra, values of the molar extinction coefficient ε , quantum yield Q and the mean lifetime τ of fluorescence are presented in Table 1. The fluorescence spectra are normalized to the maximal value. The above measurements were carried out at room temperature.

3. Results and Discussion

The absorption spectra of the compounds are presented in Figures 2 and 3, and their structural formulas are given in Figure 4 and Table 1. In Figs. 2 and 3 the absorption spectra of the compounds II – VI are compared to those of 10-phenyl-9-acetoxyanthracene, (I), reported in our earlier paper ⁵. The spectra of these compounds are similar in shape and intensity to the spectrum of the unsubstituted

hydrocarbon (anthracene), but the whole curve is shifted to longer wave lengths. Hence they exhibit the bathochromic effect. In the absorption spectrum, in analogy with anthracene, three separate bands related to three different electronic transitions can be distinguished. They can be designated as ${}^{1}A \rightarrow {}^{1}L_{a}$, ${}^{1}A \rightarrow {}^{1}B_{b}$ and ${}^{1}A \rightarrow {}^{1}C_{b}$ transition using the Platt notation 3 . Hereafter, for abbreviation, the bands are designated as ${}^{1}L_{a}$, ${}^{1}B_{b}$ and ${}^{1}C_{b}$. The above bands consist of several vibrational peaks of different intensities (see Table 1).

As can be seen from Figs. 2 and 3 the magnitudes of the band shifts depend on the substituents and their position in the ring system. The introduction of $-OCOCH_3$, $-C_6H_5$, 4-acetoxyphenyl and 4-methylphenyl groups in positions 9 and 10 of the anthracene ring causes a change of electric transition moments, mainly of the one which is parallel to the shorter axis of the molecule. These changes give rise to shifts of the 0-0 electronic vibration transitions. The observed shifts show a higher value in the case of the ¹L_a band and a lower one in the case of the ¹B_b and ¹C_b bands. These frequency shifts calculated with respect to the anthracene values for the ¹L_a and ¹B_b bands are: 950 and 500 cm^{-1} for compound I; 1100 and 650 cm^{-1} for compound II and 1200 and 800 cm⁻¹ for compound III, respectively. The acetoxy and methyl groups additionally substituted in position 2 of the anthracene ring (compounds IV and V) cause extra shifts, which, calculated with regard to the values of 0-0 electronic vibration transitions of the ¹L_a and ¹B_b bands of compounds II and I, are: 150 and 400 cm⁻¹ and 200 and 650 cm⁻¹, respectively. Note that the band shifts in the latter case show an opposite behaviour, i.e., the shift of the ¹B_b band is about three times larger than the one for the ¹L_a band, whereas in the case of compounds I, II and III, the shifts of the ¹L_a band are about twice those of the ¹B_b band. Since the ¹C_b band of the molecules is blurred and, furthermore, has only a weakly marked vibration structure, the frequency of the 0-0 electronic vibration transition given in Table 1 is not exact. However, it should be emphasized that the ¹C_b band of all compounds investigated is shifted to the longer wave lengths like the 1La and 1Bb

The shifts of the ¹L_a, ¹B_b and ¹C_b bands in the absorption spectrum of compound VI agree with the above considerations.

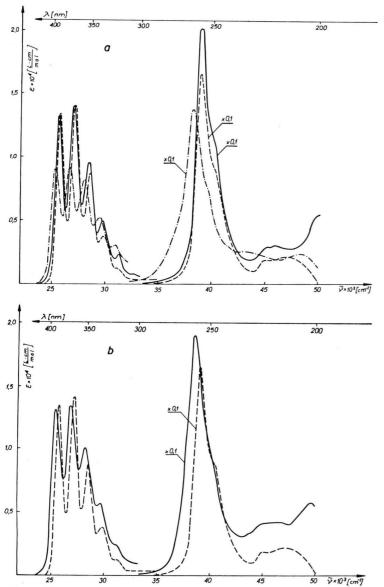


Fig. 2. Absorption spectra of compounds: I --- (2a, 2b); II --- (2a); VI --- (2a) and IV --- (2b). The scale of the spectra in the UV are ten times smaller.

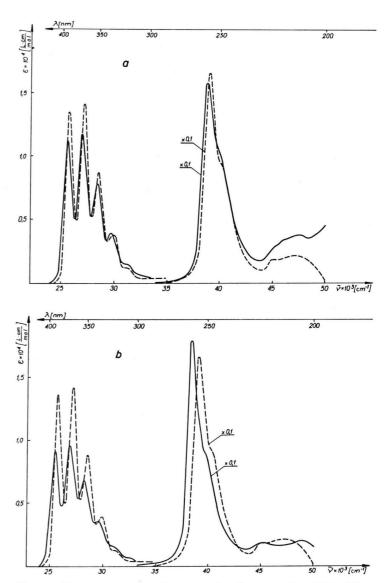


Fig. 3. Absorption spectra of compounds: I --- (3 a, 3 b); III

(3 a) and V --- (3 b). The scale of the spectra in the UV is ten times smaller.

Table 1. Position of absorption and emission maxima, the oscillator strengths, the quantum yield and the mean lifetime of fluorescence of the substituted derivatives of 10-phenyl-9-acetoxyanthracene.

Compound	Transition	Oscillator strength f	Quantum Yield Q Mean lifetime τ [ns]	Frequencies of the vibration peaks			
				Absorption		Emission	
				ε [lmol ⁻¹ cm ⁻¹]	ν _{ab} [cm ⁻¹]	$I/I_{ m max}$	$v_{\rm fl}$ [cm ⁻¹]
Anthracene	¹A ≵ ¹La	0.16	0.31 3.40	9 400 9 500 6 800 3 500 1 500 900	26 700 28 150 29 600 31 000 32 350 33 800	0.58 1.00 0.39 0.11 0.02	26 450 25 150 23 800 22 500 21 200
	$^1A \rightarrow {}^1B_b$	2.54		181 000 95 000	39 600 41 000		
	$^{1}\!A \to {}^{1}\!C_{b}$	0.33		13 600	45 400		
10-Phenyl-9-acetoxy- anthracene (I)	$^{1}A \gtrsim {}^{1}L_{2}$	0.25	0.59 5.40	13 500 14 200 8 700 3 700 1 200	25 750 27 200 28 550 29 850 31 200	1.00 0.92 0.44 0.11 0.02	24 900 23 700 22 400 21 100 19 500
	$^{1}A \rightarrow {}^{1}B_{b}$	2.30		166 000 85 000	39 100 40 400		
OAc	$^{1}A \rightarrow {^{1}C_{b}}$	0.79		18 500	44 690		
(4-Acetoxy- phenyl) -9-acetoxy- anthracene (II) OAc	$^{1}\mathrm{A} \gtrapprox ^{1}\mathrm{L}_{\mathrm{a}}$	0.26	0.56 5.40	13 200 14 000 9 500 4 900 2 300 700	25 600 26 950 28 400 29 750 31 250 32 700	1.00 0.90 0.36 0.11 0.04	24 900 23 700 22 200 20 750 19 500
\wedge	$^1A \rightarrow {}^1B_b$	2.80		211 100 100 000	38 950 40 350		
OAc	$^{1}A \rightarrow {^{1}C_b}$	0.90		29 000 30 050	45 200 46 000		
(4-Methyl-						1	
phenyl) -9-acetoxy- anthracene (III) CH ₃	$^{1}A \gtrsim {}^{1}L_{a}$	0.24	0.55 5.30	11 300 11 800 7 800 3 800 1 500	25 500 26 900 28 300 29 700 31 200	1.00 0.93 0.45 0.15 0.03	25 150 24 000 22 750 21 250 19 850
	$^{1}A \rightarrow {^{1}B_b}$	2.70		158 000 94 000	38 800 40 200	0.00	17 000
	$^1\!A \to {}^1\!C_b$	0.86		26 000 38 000	45 100 47 000		

Compound	Transition	Oscillator strength f	Quantum Yield Q Mean lifetime τ [ns]	Frequencies of the vibration peaks			
				Absorption		Emission	
				$\frac{\varepsilon}{[\text{lmol}^{-1}\text{cm}^{-1}]}$	[cm ⁻¹]	$I/I_{ m max}$	$v_{ m fl}$ [cm $^{-1}$
10 (4-Acetoxy- phenyl) -2,9-diacetoxy- anthracene (IV)							
OAc	$^{1}A \gtrsim {^{1}L_{a}}$	0.23	0.36	13 200 13 400	25 450 26 850	1.00 0.87	24 700 23 450
			5.90	10 100 5 600 2 200	28 200 29 600 31 150	$0.38 \\ 0.14 \\ 0.04$	22 000 20 700 19 150
\wedge	${}^{1}A \rightarrow {}^{1}B_{b}$	2.47		190 000 97 500	38 550 40 000		
OAc	$^{1}A \rightarrow {}^{1}C_{b}$	0.76		32 000 58 200	44 600 49 700		
10-Phenyl-2-methyl- 9-acetoxy-	¹A ≵ ¹La	0.21	0.52	9 000	25 450	1.00	24 700
anthracene (V)	$n \leftarrow D_a$	0.21	0.02	9 500 6 900 3 000	26 850 28 150 29 550	0.88 0.43 0.13	23 450 22 250 20 650
			5.50	1 400 600	30 900 32 400	0.13	19 250
	$^1A \rightarrow {}^1B_b$	2.34		180 400 84 500	38 450 39 850		
CH_3	$^{1}A \rightarrow {}^{1}C_{b}$	0.79		18 500 20 500	45 000 49 000		
10-(2-Acetoxyphenyl)-							
3-metoxy-2,9-diacetoxy- anthracene (VI)	¹A ≵ ¹La	0.25	0.37	9 100 9 200 8 300	25 250 26 600 28 050	1.00 0.91 0.48	24 550 23 250 21 900
OAc			6.60	5 200 3 000	29 450 30 900	0.17 0.04	20 500 19 000
OCH ₃	$^{1}A \rightarrow {}^{1}B_{b}$	2.34		139 000 60 500	38 250 39 750		
OAc	$^{1}A \rightarrow {^{1}C_b}$	0.59		25 000 24 500	43 400 48 500		

It results from Fig. 2 and 3 (see also Table 1) that, when the hydrogen atoms in the anthracene ring are replaced by phenyl, acetoxy- and methylphenyl, -OAc, $-CH_3$ and $-OCH_3$ groups, the absorption spectrum is modified in a complex manner, i. e. the substituents cause the bathochromic effect and change the intensities of the 1L_a , 1B_b and 1C_b bands. In order to illustrate the influence of the above mentioned groups on the absorption transition probabilities the oscillator strengths of the three bands have been determined using the follow-

ing expression 6:

$$f = (3 m c n/\pi e^2) \int \varepsilon_{yM} dy, \qquad (1)$$

where n is the refractive index of the solvent, $\int \varepsilon_{\gamma M} \, \mathrm{d}\gamma$ is the experimental value of the absorption integral of the solution and m, e and c have their standard meaning. As has been shown earlier ¹², Eq. (1) is valid in the case when the solvent, as an external physical medium, is considered to be continuous and structureless dielectric. For this reason the obtained f values can be used in qualitative interpretations only.

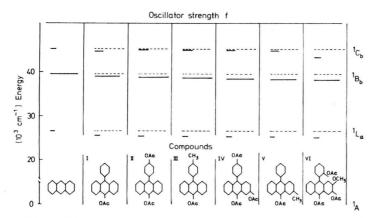


Fig. 4. The energy level scheme of the compounds investigated with marked values of oscillator strengths. The anthracene values are given for comparison only.

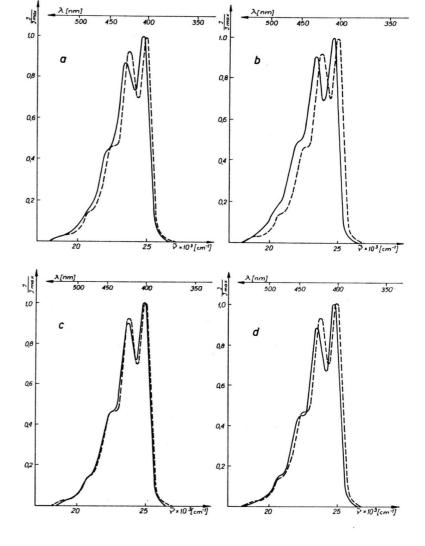


Fig. 5. The fluorescence spectra of compounds: I ——— (5 a, 5 b, 5 c, 5 d); IV ——— (5 a); VI ——— (5 b); II ——— (5 c) and V ———— (5 d).

The analysis of the *f* values (see Table 1) indicates that the substituents: phenyl, acetoxy- and methylphenyl, acetoxy, methyl and methoxy, as compared with anthracene, cause a double increase of the *f* value for the ${}^{1}L_{a}$ and ${}^{1}C_{b}$ bands and smaller changes for the ${}^{1}B_{b}$ band. It should be emphasized that the ${}^{1}C_{b}$ band, which in anthracene is presumed to be forbidden, has a larger absorption transition probability for the compounds investigated. This can be due to a small interaction of the two conjugated systems in the derivatives of 10-phenyl-9-acetoxyanthracene ⁷.

The determined energy values of the $^{1}L_{a}$, $^{1}B_{b}$ and $^{1}C_{b}$ electronic states and their corresponding oscillator strengths are graphically presented in Fig. 4 where the anthracene data are included for comparison. In Figure 4 the length of the horizontal lines are proportional to the f values and their position on the energy scale gives the energy value of the lower electronic vibration transition.

The fluorescence spectrum of the compounds I, II, IV, V and VI are given in Figure 5. As can be seen from Fig. 5, the emission spectrum shows a less clear vibrational structure than the absorption spectrum. The intensity distribution of the vibration peaks of the emission spectrum differ from that in the ¹L_a absorption band. The absorption and emission spectra do not perform the so-called mirror symmetry. The frequency differences between neighbouring vibrational peaks are not equal; they have different values from those of anthracene. The obtained differences are larger than the experimental

error in the determination of the frequencies. The estimated experimental error in the determination of the frequencies of the maxima varies between 40 cm⁻¹ at the high frequencies and 20 cm⁻¹ at the low frequencies. The absence of mirror symmetry, and the fact that the vibration structure of the absorption and emission spectrum is blurred, appears to be due to the weak interaction of the phenyl and anthracene derivatives in the compounds.

Column three of Table 1 contains the fluorescence quantum yield Q (upper number) and the mean lifetime τ (lower number) of the $^1\mathrm{L}_a$ electronic state. The fluorescence quantum yields of the compounds I, II, III and V are about 40% larger than the value obtained for anthracene. The Q values determined for compounds IV and VI are also about 14% higher. The fluorescence of the compounds IV and VI (see Table 1) has a longer mean lifetime. It can cause bigger solvent quenching of the fluorescence than in the case of the other compounds. Also, it should be noted that the ratio Q/τ is constant for the compounds I, II, III and V and differs for the compounds IV and VI within the experimental error limit.

4. Acknowledgement

We wish to express our appreciation to Doz. Dr. R. Bauer for his help in the lifetime measurements. One of us (J. H.) wishes to thank Prof. Dr. H. Walther for the hospitality shown during his stay at the University of Köln. He also thanks the Alexander von Humboldt-Stiftung for a fellowship.

- ¹ N. Jones, J. Am. Chem. Soc. 67, 2127 [1945].
- ² N. Jones, Chem. Rev. 41, 353 [1947].
- ³ Systematics of the Electronic Spectra of Conjugated Molecules: A Source Book by J. R. Platt and Co-workers, John Wiley and Sons, Inc., New York 1964.
- ⁴ A. S. Cherkasov and T. M. Vember, Optika and Spektrosk. 1, 663 [1956].
- Janina Heldt, Janina Gronowska, and Józef Heldt, Acta Phys. Polon. A 47, 613 [1974].
- ⁶ Th. Förster, Fluoreszenz Organischer Verbindungen, Göttingen 1951.
- ⁷ C. Sandorfy, Die Elektronenspektren in der Theoretischen Chemie, Verlag Chemie GmbH., Weinheim 1961.
- 8 Peter O'D. Offenhartz, Atomic and Molecular Orbital Theory, McGraw-Hill, New York 1970.
- ⁹ Janina Gronowska and Janina Heldt, Roczniki Chem., in press.
- ¹⁰ G. Weber and F. W. J. Teale, Trans. Faraday Soc. 53, 646 [1957].
- ¹¹ R. K. Bauer and A. Kowalczyk, Raport techniczny Nr. 3, Nicholas Copernicus University, Toruń 1974.
- ¹² H. Grudzinski and J. Heldt, Acta Phys. Polon. **25**, 391 [1964].